
An angel, python, root and
config walked into a bar...
Timothy Hjort

ORANGECON 2024

Why? Who let this guy up
here?
Welcome to my talk.

`whoami`

 Vulnerability Research at Outpost24
 Master of Science in engineering:

Computer Security
 Hardware is cool
 Software Architecture is interesting.
 and I love cheap hardwareTimothy Hjort

Our focus
Consequences of subpar patching and poor software design

We could also be honest and
say that I will be standing

here on the scene bragging

and how it caused... issues.

CVE-2024-29973

Unauthenticated Python
code injection

CVE-2024-29974

Remote code execution
via unauthenticated
config upload

CVE-2024-29975

Local “sudo”-like privesc

CVE-2024-29976

Privilege escalation and
information disclosure

red=won’t focus too much on this

and a backdoor. CVE-2024-29972 (aka NSARescueAngel)

How it started
AKA how did I stumble upon a backdoor

CVE-2023-27992

I worked on it pre-publication
of IBM’s awesome blog

My work involved
unpacking firmware and
decompiling binaries and

python bytecode.

Back then I didnt find much of
interest but I was tasked with
representing my department

for a student evening.

which was SUID

I found an interesting
binary

And inside...

I found some funny strings

Well that’s suspicious

and I got greenlit to
continue poking at the

device
duh, that’s why I’m here

First we gotta look into
how this thing works

How is the NAS constructed?

We already know remote_help-cgi has some funny content

So lets focus on it first

What does it do?

Callbacks

The request supplies a callback name which is executed

“sshd_tdc” callback

 Starts SSH server and maps port 22 to WAN via UPn
 Generates a password based on Eth0 MAC address

(and appends “tdT” to the output
 Enables the NSARescueAngel user

“backdoor”
“open_backdoor.sh”

 callback

executes . Its dead :(

Awesome!

it’s authenticated :(

However developers of
consumer devices tend

to be WET

“Write Everything Twice”. Get your
mind out of the gutter

so historical vulnerabilities might
still be relevant

looking at the
changelogs...

Theres a lot of
bypasses. We can

probably find one more.

The authentication mechanism

how does it work?

Two categories

Authenticate
Unauthenticated

Authenticated requests require cookies

The quirk in how it
checks the whitelist

it looks for substrings

 /

 /foo/bar

 /foo/bar/

 /foo/ /bar

favicon.ico vali

favicon.ico vali

favicon.ico valid

invali

Apache is unaware of
what URLs a plugin
considers valid

 i.e. all request handlers need to
ensure a request targets a valid
endpoint... which is fair.

and it’s consequences

Paths

All handlers must validate the
request path since /
<handler>/favicon.ico
bypasses the module...

Authentication

All endpoints must know if
they require authentication or
not

Cookie

All authenticated endpoints
must know how (and
remember) to validate a
cookie.

So the authentication module is useless

Now to the good stuff

Backdoor exploit

GET /desktop,/cgi-bin/remote_help-cgi ?type=/favicon.ico sshd_tdc

An issue: we need the
password.

 Password = Calculate(eth0.MAC) +
“tdT

 i.e. an attacker needs to know the
MAC addres

 or have access to a shell

I targeted a CI since its cooler :)
and easier

Python code injection and how requests are handled

 Endpoints determined by
calling eval on user inpu

 which is great.

Control flow

 Endpoints determined by
calling eval on user inpu

 which is great.

Control flow

(For us)

 GET / / /ba
 eval(“import controllers. ”
 eval(“controllers. . (cherrypy=object(),

arguments=request_args)”)

foo
foo

foo

bar

bar

 IBM appended /favicon.ico to the pat
 chose a controller calling “system
 and inserted backticks into the body

 Patched by restricting request path
directories to only A-Z and
underscore

 and restricting path to max 2 dirs

/register_main/setCookie

At this point in time, after IBM, they no longer permit “.” in the request paths. So
favicon.ico is no longer good. Digging into a list of permitted tokens I did find an
acceptable path however:

But how do we find an auth bypass to
python now?

 Our bypass path is already 2 directories
lon

 There is a limit to the length remember?

I present to you:
simZysh

I present to you:
simZysh

They added a new endpoint.
and didnt learn.

This part is of interest:

 Request body is now used to determine what
controller to call

 is inserted by value here“args”

This is important.

So how do we exploit it?

The first two point the endpoint towards a controller that does not
validate cookies, and doesnt raise an exception

Then we close the parentheses and make the first statement “False” so we can abuse boolean logic to
return what we want...

Finally we execute makekey and comment out the rest of the eval
statement to ensure we dont raise a syntaxerror

We can also put evals inside the
eval, permitting base64 payloads.

sadly we are nobody :(

Bonus: local privesc dug into file_upload-cgi :)

/usr/local/apache/web_framework/bin/executer_su /bin/sh

So... how did we get here?

a recap

 A broken authentication modul
 They “fixed” auth bypass in cherryp
 reimplemented it without the fi
 forgot quotes “ for arguments causing a CI

The patch timelines

patched backdoor

CVE-2020-13364,
CVE-2020-13365

patched CI

CVE-2023-27992

patched backdoor 2

CVE-2024-29972

patched CI 2

CVE-2024-29973

Their patching

 Killed simZys
 backdoor function exits early but it is still present-ish.

Some key takeaways
 “quick” patches isnt good
 But ZyXEL should get some credit

Want easy CVES? Revisit them, their
patches is probably a joke.

An angel, python, root and
config walked into a bar...

